

AI 热电堆人数统计传感器 V\$351

安全须知

Milesight

- 为保护产品并确保安全操作,请遵守本使用手册。如果产品使用不当或者不按手册要求
 使用,本公司概不负责。
- ✤ 严禁拆卸和改装本产品。
- 为避免火灾和触电危险,请在安装前远离雨水和潮湿的地方。
- ✤ 请勿直接触摸处理器等发热部件,以免烫伤。
- ◆ 请勿将产品放置在不符合工作温度、湿度等条件的环境中使用,远离冷源、热源和明火。
- ◆ 请勿使产品受到外部撞击或震动。
- ✤ 请确保产品安装牢固。
- ◆ 请确保电源插头已牢固地插入电源插座。

产品符合性声明

VS351 符合 CE, FCC 和 RoHS 的基本要求和其他相关规定。

版权所有© 2011-2024 星纵物联

保留所有权利。

如需帮助,请联系

星纵物联技术支持: 邮箱: contact@milesight.com 电话: 0592-5023060 传真: 0592-5023065 地址:厦门市集美区软件园三期 C09 栋

文档修订记录

日期	版本	描述
2024.7.18	V1.0	第一版

Milesight

目录

—	产品简介	5
	1.1 产品介绍	.5
	1.2 产品亮点	.5
Ξ、	产品结构介绍	6
	2.1 包装清单	.6
	2.2 外观概览	.6
	2.3 按键说明	.7
	2.4 产品尺寸	.7
Ξ、	产品供电	8
四、	安装指导	8
	4.1 检测范围	.8
	4.2 其他影响准确率的因素	.9
五、	产品安装	9
	5.1 安装1	0
六、	产品配置1	.3
	6.1 配置方式1	3
	6.1.1 NFC 配置1	.3
	6.2 LoRaWAN [®] 基本配置1	.3
	6.2.1 LoRaWAN [®] 基本参数	.3
	6.2.2 LoRaWAN [®] 通信频段1	.6
	6.3 时间同步1	17

Milesight ≣@#₩

	6.4	常用设置17
	6.5	校准设置19
	6.6	阈值设置19
	6.7	Milesight D2D 设置20
	6.8	存储设置
		6.8.1 数据存储
		6.8.2 数据重传
		6.8.3 数据回传
	6.9	维护24
		6.9.1 升级
		6.9.2 备份
		6.9.3 重置
七、	通信	协议
	7.1	设备信息
	7.2	传感器数据
		7.2.1 上报数据
	7.3	下行指令29
	7.4	历史数据回传

一、产品简介

Milesight

1.1 产品介绍

星纵物联VS351是一款专为过线人数统计而设计的传感器,采用AI算法和热电堆技术, 实现双向人流统计。产品提供电池供电与 Type-C 供电两种版本,其中电池供电版本,续航 可达 1.6 年。同时设备巧妙融合了雷达传感器,采取休眠机制,符合 ESG 低碳要求。

VS351 基于 LoRa[®]通信技术,不仅支持标准的 LoRaWAN[®]协议组网通信,也支持通 过星纵物联 Milesight D2D 协议实现设备间无网关直接通信,同时支持与星纵物联 LoRaWAN[®]网关及星纵云/星纵物联开放平台/第三方物联网平台共同构建智能物联网络, 实现远程人流分析与管理。

VS351 结构小巧,时尚美观,支持顶装和门楣安装,探头采用巧妙的旋转设计。适用 于会议室门口、公厕、便利店、地铁等场景的过道人流分析。

1.2 产品亮点

- 双向计数:采用 AI 算法和热电堆技术,实现双向人数统计,实时掌握人员流动状态
- 两种供电方式可选:提供电池供电与 Type-C 供电两种方式,电池续航可达 1.6 年
- 高准确率:常规场景下,准确率可达 95% (单人通过时高达 99%)
- 符合 ESG 低碳要求:设备巧妙地融合了雷达传感器,当感知到有人经过时,自动唤醒 热电堆传感器进行人数统计;当无人经过时,设备进入休眠状态以降低功耗。此外,用 户还可以自定义设备的休眠时间段,进一步实现节能降耗的目标
- 易安装部署:积木拼图般的安装体验,支持顶装和门楣安装两种方式
- 匿名识别:通过热电堆红外技术进行人数统计,不依赖于可见光图像,无惧隐私泄露
- 温度监测:检测人流趋势的同时,感知周边环境的温度变化,提供更专业的数据支撑
- 数据完整性:具备本地存储功能,可存储 1000 条传感器数据,且支持断网数据重传与数据回传功能,确保信息可追溯,避免数据丢失
- 简单易用: 支持手机 NFC 快速配置
- D2D 低时延通信: 支持通过星纵物联 Milesight D2D 协议实现设备间无网关直接通信
- 兼容性好:兼容标准 LoRaWAN[®]网关与第三方网络服务器平台,支持自组网
- 管理一体化:快速对接星纵物联 LoRaWAN[®]网关、星纵云和星纵物联开放平台,无需 额外配置

二、产品结构介绍

2.1 包装清单

Milesight

🛕 如果上述物品存在损坏或遗失的情况,请及时联系您的代理或销售代表。

2.2 外观概览

2.3 按键说明

Milesight

功能	操作	
恢复出厂设置	长按按钮超过 10 秒	

2.4 产品尺寸

Type-C 版本:

单位: mm

电池版本:

Type-C 版本:

Milesight

将电源适配器接到设备的 Typc-C 口

电池版本:

默认情况下,电池安装在电池舱内,将电池仓与设备相连给设备供电。 如果需要更换电池,请从设备上取下电池舱,并打开电池舱的盖子,如图所示插入新电池。

注意事项:

- (1) 取下电池盒供电插头保护套时,请注意避免插头正负极触碰,以防引起短路。
- (2) 设备只能由 ER26500 Li-SOCI2 电池供电,不能使用碱性电池。
- (3) 确保所有更换的电池都是新的,否则电池寿命将会缩短。

四、安装指导

4.1 检测范围

设备所覆盖的检测范围与设备安装高度相关。

推荐安装高度 (m)	检测范围 (m)
2.3	3.80×1.35
2.5	4.35×1.85
2.7	4.55×2.10
3	5.55×2.30

Milesight

4.2 其他影响准确率的因素

- 目标靠近检测范围边缘经过或倾斜通过
- 原因: 热电堆成像不完整无法判断为一个人
- 目标快速通过(超过 2m/秒),目标不纳入统计
- 原因: 热电堆抓取的成像信息太少, 无法判断为一个人
- 双人并肩通过,且间距小于 20cm
- 原因: 热电堆双人成像和单人成像相似, 无法区分是双人通过
- 当安装高度为 2.3 米时,出现身高超过 2 米的目标,则会被计为 2 个人。
- 原因: 一个人成像太大, 热电堆成像会判断为两个人, 无法区分

五、产品安装

安装须知:

- (1) 建议安装高度为 2.3~3 米。
- (2) 尽量确保设备探头垂直于地面,若有偏差也需要保证探头与地面的夹角在15度以内。

- (3) 设备最佳工作温度范围是 15~30℃,保持设备远离热源、冷源以及气流变化较大的区域,例如窗户、通风口、风扇、空调等。
- (4) 将设备远离玻璃或镜子,并置于儿童无法触及的地方。
- (5) 确保设备下方没有金属,设备周围 30 厘米范围内没有其他雷达设备,检测区域内没有障碍物。
- (6) 对于电池版本,请确保设备的检测区域内没有固定的和大的移动物体(如摇头风扇)。

5.1 安装

Milesight ≣ iii ™ ₩

安装步骤:

1. 取下设备两端的装饰件。

2. 根据安装支架的孔位,在天花板/门楣钻孔并打入膨胀螺栓,用壁挂螺丝固定安装支架。

Type-C 版本:

电池版本:请先将2块安装支架拼接,并完成固定。

Milesight

3. 确定探头调节角度和设备安装方向。

吸顶安装:将探头旋转至正对地面。

门楣安装:将设备印有 Logo 的一面朝下,并将探头旋转至正对地面。

4. 将电源线插入设备的 Type-C 接口,给设备通电(仅 Type-C 供电版本)。

5. 将设备和电池盒 (如有) 固定到安装支架上。

Typc-C 版本:先将设备和电池盒上的卡槽与安装支架中间的凹槽对齐,然后按照安装 支架上箭头指示的方向,将设备和电池盒滑动固定到安装支架上。

电池供电版本:先将设备和电池盒上的卡槽与安装支架中间的凹槽对齐,然后按照安装 支架上箭头指示的方向,将设备和电池盒滑动固定到安装支架上。

6. 将装饰件对准设备两边的卡槽滑动固定到设备上。

Typc-C 版本:

电池供电版本:

Milesight ≣@#₩

6.1 配置方式

VS351 支持 NFC 配置

6.1.1 NFC 配置

配置准备:

- 手机 (支持 NFC)
- Milesight ToolBox App: 可在星纵物联官网 (Android 系统) 或苹果商店 (IOS 系统) 下载

配置步骤:

- 1. 开启手机 NFC 功能后打开 Milesight ToolBox App;
- 将手机的 NFC 区域紧贴在产品正面的 NFC 感应区,点击 "NFC 读取"并保持几秒不动,即可获取产品的基本信息;
- 3. 在 App 上设置后紧贴产品的 NFC 感应区即可完成写入配置。第一次使用手机为设备配置时需要输入密码进行验证,默认密码: 123456。

注意:

(1) 读写 NFC 之前,请确保设备已正常供电。

(2) 不同安卓手机的 NFC 区域不同,大致位于背部摄像头周围,具体请查询手机说明书或 咨询相关客服。

(3) NFC 读写失败后,请将手机暂时远离设备再贴到设备上尝试。

6.2 LoRaWAN[®]基本配置

设备连接到 LoRaWAN[®]网络前需要设置相关网络通信参数,请根据如下步骤完成 LoRaWAN[®]网络配置。

6.2.1 LoRaWAN[®]基本参数

打开 ToolBox App 的"设置->LoRaWAN[®]设置"菜单,设置设备的入网类型、Class 类型

Milesight

以及配置入网所需的 App EUI、应用程序密钥等参数。以下参数可以保持默认不变但必须 和网络服务器上的配置相同。

下午3:56 🕸 🙆	8	* 2 😤 💷
	VS351-470M	≑
		维护
I oRaWAN 设置		^
设备EUI	451	
241124/771200		
APP EUI		
24e124c0002a0	0001	
• 应用程序端口		
85		
LoRaWAN 版本		
V1.0.3		*
工作模式		
Class A		*
确认包模式 ①		
入网方式		
OTAA		•
• 应用程序密钥		

重新入网模式		
设置发送链路检测	信号数量 ①	
32		1
通道模式		
标准通道		-
• 支持频率		1
CN470		•
启用通道 ①		
0-95		

速率自适应模式 ①		
扩频因子 ①		
SF10-DR2	*	
输出功率		
TXPower0-19.15 dBm	•	
接收窗口速率 ①		
DR0 (SF12, 125 kHz)	•	
接收窗口频率 ①		
505300000		
常用设置	~	
校准设置	~	
写入		
• • 设备	模板	

参数	说明		
设备 EUI	LoRaWAN [®] 设备的唯一识别标识符,可在产品标签上查看。		
App EUI	设备的 App EUI,默认值为 24E124C0002A0001。		
应用程序端口	发送或接收 LoRaWAN [®] 数据的端口,默认端口为 85。		
LoRaWAN [®] 版本	可选 V1.0.2, V1.0.3。		
工作模式	Class A。		
确认包模式	启用后,设备向服务器发送数据后没有收到 ACK 答复的情况下,设备将 重发 1 次数据。		
入网方式	可选 OTAA 或 ABP。		
应用程序密钥	OTAA 入网使用的应用程序密钥(App Key),默认值为 5572404C696E6B4C6F52613230313823。		
设备地址	ABP 入网使用的设备地址(DevAddr),默认值为产品序列号 5~12 位。		
网络会话密钥	ABP 入网使用的设备网络会话密钥(Nwkskey),默认值为 5572404C696E6B4C6F52613230313823。		

应田理度今迁家组	ABP 入网使用的应用程序会话密钥(Appskey),默认值为		
应用性序云话名讲	5572404C696E6B4C6F52613230313823。		
	上报间隔≤30分钟:设备将每30分钟发送一次链路检测信号,没有收到		
于实入回进去	答复达到一定数量后将重新入网;		
里新入网惧式	上报间隔>30分钟:设备将根据上报间隔随数据包发送一次链路检测信		
	号,没有收到答复达到一定数量后将重新入网。		
速率自适应模式	速率自适应, 启用后网络服务器可以调节节点的数据速率和功耗, 建议在		
(ADR)	设备没有移动的情况下使用。		
	禁用 ADR 的情况下设备将根据此速率传输数据。SF(扩频因子)越小,		
J 频因子	传输速率越快,适合近距离传输,反之亦然。		
输出功率	设备发送数据的输出功率。		
接收窗口速率	接收窗口 2 速率。		
接收窗口频率	接收窗口 2 频率。		

注意:

(1) 如采购大量设备,可联系星纵物联获取设备 EUI 等参数表格。

(2) 如需随机 App Key 请在购买前联系星纵物联相关工作人员。

(3) 如使用星纵云管理设备,请使用 OTAA 入网。

(4) 仅 OTAA 入网类型下支持重新入网模式。

6.2.2 LoRaWAN[®]通信频段

打开 ToolBox App 的"设置->LoRaWAN[®]设置"菜单,设置设备发送数据使用的 LoRa[®]频段,一般必须和 LoRaWAN[®]网关使用的频段匹配。

• 支持频率		
CN470		\sim
启用通道 ①		
8-15		
序号	频率/M	IHz (1)
0 - 15	470.3 -	473.3
16 - 31	473.5 -	476.5
32 - 47	476.7 -	479.7
48 - 63	479.9 -	482.9
64 - 79	483.1 -	486.1
80 - 95	486.3 -	489.3

配置示例:

1,40: 启用通道1和通道40

- 1-40: 启用通道 1-40
- 1-40, 60: 启用通道 1-40 和 60

All: 启用所有通道

Milesight

空: 禁用所有通道

6.3 时间同步

打开 ToolBox App 并读取设备信息后,在"状态"的设备时间条目旁点击"同步",即可将手机时间同步到设备信息和屏幕上。当设备 LoRaWAN[®]版本设置为 1.0.3 版本,设备会在入网后通过 MAC 指令请求同步网络服务器时间。注意:网络服务器默认为零时区时间。

固件版本		V1.1-a8
硬件版本		V1.0
设备状态	开档	机
入网状态		已激活
读取方式		NFC
RSSI/SNR		-62/9
设备时间	2023-11-02 17:03	同步

6.4 常用设置

打开 ToolBox App 的"设置->常用设置"菜单设置上报周期等参数。

常用设置	^
上报周期(min)	
10	
重置累计值	
重置时间	⑤ 00:00 每天 >
数据存储 ①	
数据重传 ①	
上报累计值	
上报温度	
温度单位	
°C	*
翻转检测方向 ①	
安装高度/mm	
2700	
休眠模式	
休眠时间	<pre> 22:00-09:00 > </pre>
修改密码	
* 新密码	
	9
• 确认密码	
	26

参数	说明		
上报周期	上报传感器数据的时间间隔,默认值为10分钟,可配置1-1440分钟。		
重置累计值	是否启用重置累积进出计数值。		
手里叶词	重置累积进出计数值的时间。		
里直的问	注意: 在重置之前, 累积值将被报告一次。		
数据存储	是否启用本地数据存储功能,参考 3.6.1 章节。		
粉中手件	是否启用数据重传功能, 启用后设备在断网后会记录断网时间点, 待设备重		
致 指 里 1 交	新联网后重传断网时间点与联网时间点之间的存储数据包。参考 3.6.2 章节。		
上报累计值	是否启用上报累积计数值。		
山村泊安	是否启用上报温度数据包。当启用时状态页面上会显示的温度。		
	注意:此功能不影响温度阈值和报警数据包。		
温度单位	设置温度单位,当启用时状态页面上会显示的温度单位。		

Milesight ≣ @ ₩ ₩

	是否启用改变检测方向。	
	顶装安装默认方向:	门楣安装默认方向:
翻转检测方向	U U U U U U U U U U U U U U U U U U U	
安装高度/mm	设置安装高度。 默认值:2700 毫米。范围:2300~3	000 毫米。
	默认值:2700毫米。范围:2300~3	000 毫米。

休眠模式 是否启用休眠模式并配置休眠时间。在休眠时,设备将停止计数和报告。

修改密码修改设备登录密码。

6.5 校准设置

VS351 支持对温度数值进行校准。

打开 ToolBox App 的"设置->校准设置"菜单进行温度数值校准。设置完成后,设备会将 校准值加到当前值中并上报最终值。

校准设置	
温度	3
数值校准	
当前初始值: 27.4 °C	
校准值	
	°C
最终值: 27.4 °C	

6.6 阈值设置

打开 ToolBox App 的"设置->阈值设置"菜单来进行阈值设置,当条件满足阈值时,设备 将会立即上报阈值报警包。

注意:最佳操作温度范围为 15℃ 至 30℃。即使温度阈值被禁用, 当温度高于 30℃ 时, 设备也会报告报警包。

阈值设置	^
周期人数	
进入人数大于	
离开人数大于	
累计人数	
累计进入人数大于	
累计离开人数大于	
温度	
值大于 / "C	
值小于 / °C	

参数	说明	
	是否设置周期人数阈值上报。	
周期人致	启用后可设置 进入人数 和离开人数大于多少进行上报报警包。	
累计人数 温度	是否设置累计人数阈值上报。	
	启用后可设置 累计进入人数 和累计离开人数大于多少数值进行上报报警包。	
	是否设置温度阈值上报。	
	启用后可设置 当温度值大于多少 和温度值小于多少数值进行上报报警包。	

6.7 Milesight D2D 设置

星纵物联自主开发的 Milesight D2D 协议支持星纵物联 LoRaWAN[®]终端设备之间的无网 关直接通信。VS351 可以作为 LoRa[®] D2D 主控端设备发送控制命令给被控端设备。 配置步骤:

- 1. 启用 D2D 功能;
- 配置 D2D 密钥、D2D 通信速率/频率(即 LoRaWAN[®]接收窗口 2 速率/频率); 注意: 三者均要与主控端配置保持一致
- 3. 配置控制命令及对应的被控内容和状态。

配置示例:

当满足条件时,设备将立即发送控制命令1234给相应被控端设备。

Milesight

D2D设置	~
启用	
D2D密钥	

有人进入	
有人离开	
人数阈值触发	C
温度阈值触发	
温度阈值解除	

参数	说明			
	定义设备间 D2D 的通信密钥,主控端与被控端需保持一致。格式为 32			
D2D 密钥	位十六进制字符,小于 32 位将自动在高位处补 0。			
	默认值 5572404C696E6B4C6F52613230313823。			
	当 VS351 检测到以下一种或多种状态时, 会向相应的 Milesight D2D			
	被控端设备发送控制命令:			
	(1) 有人进入			
	(2) 有人离开			
控制状态	(3) 人数阈值触发			
	(4) 温度阈值触发			
	(5) 温度阈值解除			
	注意: 对于人数阈值和温度阈值条件, 请在阈值设置中启用并配置阈值功			
	能。			
	主控端触发后,将发送指定控制命令给相应被控端(该控制命令需在被控			
控制命令	端同步配置)。格式为4位十六进制字符,小于4位将自动在高位处补0。			
	如果启用, 在发送 Milesight D2D 控制命令后, 会向网关发送包含计数			
LORa 上行包	值或温度报警的 LoRaWAN [®] 上行数据包。			

注意:

- (1) D2D 功能默认关闭(默认使用 LoRaWAN[®]), 启用后优先使用 D2D 功能, 将不会使用 LoRaWAN[®]协议上报信息给网关和网络服务器。若需要上报数据包请勾选 LoRa 上行。
- (2) D2D 频率/速率同节点接收窗口 2 频率/速率。

6.8 存储设置

Milesight

6.8.1 数据存储

VS351 可存储 1000 条传感器数据, 支持通过 ToolBox App 件导出 CSV 格式的存储数据。

1. 检查设备时间是否准确:参考 6.3 章节

2. 启用数据存储功能:

打开 ToolBox App 的"设置->常用设置"菜单或 ToolBox 软件的"设备设置->基本设置", 启用数据存储功能。启用后,设备将存储所有上报数据,包括周期包和告警包。

数据存储	(i)	•
数据重传	(i)	

3. 数据导出:

CSV格式

ToolBox App: 打开"维护"菜单,点击"导出",选择导出数据时间段后将手机贴到
 设备的 NFC 区域完成数据导出。注意: App 端导出时间段最长支持 14 天。

取消		导出数据时间段			确认	
	2023-04-04	14:11	至	2	023-04-11 14	1:11
						Э
	2021	9		2	12	9
	2022	3		3	13	10
	2023	4		4	14	11
				5	15	12

- 4. 数据清除:
- ToolBox App: 打开"维护"菜单,点击"数据清除"按钮,将手机贴到设备的 NFC 区域清除历史存储数据。

6.8.2 数据重传

VS351 支持断网数据重传功能,当设备与网关失联,会主动记录断网时间点,待设备联网 后重新传输断网时间点与联网时间点之间丢失的数据包,避免设备由于断网或丢包导致传感 器数据丢失,保证数据完整性。 配置步骤:

Milesight

打开 ToolBox App 的 "设置->常用设置"菜单或 ToolBox 软件的 "设备设置->基本设置", 启用**数据存储**功能与**数据重传**功能。

数据存储	()	
数据重传	()	

 打开 ToolBox App 的"设置->LoRaWAN[®]设置"菜单或打开 ToolBox 软件的 "LoRaWAN[®]设置->基本设置", **启用重新入网模式,并设置发送链路检测信号数量。** 设备将通过链路检测信号包 (LinkCheckReq) 来判断断网时间点。

确认包模式 ①	
重新入网模式	
设置发送链路检测信号数量 🧻	
4	
速率自适应模式 (1)	
扩频因子 ①	

配置示例解析:

设备至少每 30 分钟发送 1 次链路检测信号包给网关,如果连续 4 次发送链路检测信号包 都没有收到网关的回复,则判断设备断网,数据重传的断网时间点将往前推 2 小时 (30 * 4=2 小时)。比如 15:30 分发送完第 4 个链路检测包,依旧未收到回复,则断网时间点 为 13:30 分,设备在联网后,将把 13:30 到联网时间点的数据从**旧→新**依次重传给网关 及网络服务器。

(上报间隔≤30分钟:设备将每30分钟发送一次链路检测信号;上报间隔>30分钟:设 备将根据上报间隔随数据包发送一次链路检测信号)

6.8.3 数据回传

VS351 支持数据回传功能,可下发指令查询指定时间点或指定时间段的历史存储数据,避免设备由于断网或丢包导致传感器数据丢失,保证数据完整性。

配置步骤:

- 1. 启用数据存储功能,参考 6.8.1 章节;
- 2. 从平台或网络服务器下发指令查询指定时间点/段的历史存储数据,参考 6.4 章节。

注意:

- (1) 重传过程中如果再次触发断网条件,恢复联网后会先补传之前被打断的重传数据,之后 再传输最新触发的重传数据;
- (2) 重传/回传过程中如果发生断电或重启,恢复供电且联网后将续传上次未传完的数据;
- (3) 重传/回传数据格式均已"20ce"开头,参考7.4 章节;
- (4) 重传/回传数据与周期包一起累计帧计数。

6.9 维护

6.9.1 升级

ToolBox App

- 步骤1:将固件下载到手机端;
- 步骤 2:打开 ToolBox App"维护"菜单,点击"浏览"导入固件,开始升级。

本地升级

浏览

注意:

- (1) 产品固件可在星纵物联官网下载或联系星纵物联相关工作人员获取。
- (2) 升级过程中请勿对 ToolBox 和设备进行其它任何操作。
- (3) 设备采用 ToolBox App 升级时, 仅支持安卓版手机。

6.9.2 备份

设备支持备份设备配置并导入到其它设备中,可用于快速批量配置。备份导入仅适用于型号 和频段完全相同的设备。

ToolBox App

Milesight

步骤 1:打开 ToolBox App 的"模板"菜单,将当前配置保存为新的模板到手机上; 步骤 2:选择已保存的模板,点击"写入"后将手机贴到设备的 NFC 区域写入配置。 注意:在"模板"页面选择对应的模板条目,向左滑动选择编辑模板名称或删除模板。点击 对应的模板条目即可查看和编辑具体的模板内容。

6.9.3 重置

可选择如下方法重置设备:

ToolBox App:打开"维护"菜单,点击"恢复出厂设置"后将手机贴到设备的 NFC 区域 写入配置。

Ξ	VS351-470M	ŧ
	设置	推护
历史数据		
	导出历史数据	
	查看导出记录	
	数据清除	
本地升级		
	浏览	
		_
设备操作		
	恢复出厂设置	

七、通信协议

Milesight ≣@#₩₩

设备上/下行数据均基于**十六进制格式**。数据处理方式低位在前,高位在后。

上/下行指令基本格式:

通道号1	类型 1	数据1	通道号 2	类型 2	数据 2	
1 字节	1 字节	N 字节	1 字节	1 字节	M 字节	

注意: 数据解析器示例可参考: <u>https://github.com/Milesight-IoT/SensorDecoders</u>。

7.1 设备信息

设备信息在入网或重启时上报一次。

通道号	类型	数据示例	指令解析
	0b (开机状态)	01	开机
	01 (协议版本)	01	协议版本 V1
	cc(设备供电方式)	00; 01;	电池供电;常供电
	09 (硬件版本)	01 10	硬件版本 V1.1
ΤΤ	0a (固件版本)	01 01	固件版本 V1.1
	0f (工作方式)	00	00: Class A
		6592b32851010	
	16(设备 SN)	013	16 位

示例:

ff0bff ff0101 ff166791d19604050005 ff090100 ff0a0101 ff0f00 ffcc01					
通道号	类型	数据	通道号	类型	数据
ff	0b	ff(设备开机)	ff	01	01(协议版本 V1)
通道号	类型	数据	通道号	类型	数据
ff	16	6791d19604050005 (设备 SN)	ff	09	01 00 (硬件版本 V1.0)
通道号	类型	数据	通道号	类型	数据
ff	0a	01 01 (固件版本 V1.1)	ff	Of	00 (Class A 工作模式)
通道号	类型	数据			
ff	сс	01 (常供电)			

7.2 传感器数据

7.2.1 上报数据

通道号		数据
01	75(电量) 1 个字节,单位%	
03	67(温度)	2 个字节,单位℃,乘数 0.1
		4 个字节
04	cc(累计人数)	字节 1-2 :累计进入人数
		字节 3-4 :累计离开人数
		4 个字节
05	cc(周期人数)	字节 1-2 :该上报周期进入人数
		字节 3-4 :该上报周期离开人数
		3 个字节
		字节 1-2 :温度值,单位℃,乘数 0.1
		字节 3 :报警类型
83	67(温度阈值报警)	● 00- 解除报警
		● 01 - 阈值报警
		● 03 - 高温告警, 当温度> 30℃ 会自动报警
		● 04 - 高温报警解除
		5 个字节
Q.4	cc(累计人数阈值报警)	字节 1-2 :累计进入人数
04		字节 3-4 :累计离开人数
		字节 5 :默认 01,阈值报警
		5 个字节
95	cc(周期人数阈值报警)	字节1-2 :上报周期进入人数
65		字节 3-4 :上报周期离开人数
		字节 5 :默认 01,阈值报警
		9或13个字节
		字节1-4 :时间戳
		字节 5 : 类型
20	ce(历史数据)	● 00-表示本条上报累计人数无效,因此上报
		字节长度总共9字节
		● 01 - 表示本条上报累计人数有效, 因此上报
		字节长度总共 13 字节

字节 6-7 :周期进入人数
字节 8-9 :周期离开人数
字节 10-11 :累计进入人数
字节 12-13 :累计离开人数

周期上报示例:

04cc 20001700 0367 1a01 05cc 01000000 017562					
通道号	类型	数据	通道号	类型	数据
04	cc (累计人数)	累计进入人数: 20 00=> 00 0c=32 人 累计离开人数: 17 00=> 00 17=23 人	03	67 (温度)	1a01 => 011a =>282 x 0.1 =28.2°C
通道号	类型	数据	通道号	类型	数据
05	cc (周期人数)	周期进入人数: 01 00=> 00 01=1 人 周期离开人数: 00 00=>0=0 人	01	75 (电量)	62=>98%

累计人数阈值报警示例:

84 cc 04000600 01		
通道号	类型	数据
84	cc(累计人数阈值报警)	累计进入人数: 0400=>0004=4 人 累计离开人数: 0600=>0006=6 人 01=温度据整

温度阈值报警示例:

8367 0e01 01		
通道号	类型	数据
83	67 (温度阈值报警)	0e 01 =>01 0e = 270 x 0.1 = 27 °C
		01= 温度报警

7.3 下行指令

Milesight ≣ @ \$ \$

VS351 支持通过下行指令配置设备。下行指令为确认包模式时,设备执行指令后将立即发送回复包。注意:下发指令修改 LoRaWAN[®]相关配置时,设备将触发重新入网。

通道号	类型	数据
	10 (重启设备)	ff (默认)
		3 个字节
	8e (设置上报周期)	字节 1 :00(默认值)
		字节 2-3 :上报时间,单位:分钟;范围:1-1440 分钟
		1 个字节
	ao(里自系订入致)	00:关闭;01:启用
		1 个字节
	dð(肩苓系订入奴)	01: 清零累计进入人数; 02: 清零累计离开人数
		3 个字节
		字节1 : 重置日期
		● 00: 每天
		● 01: 每周天
	ed(修改累计值重置	● 02: 每周一
		● 03: 每周二
ff	时间)	● 04: 每周三
		● 05: 每周四
		● 06: 每周五
		● 07: 每周六
		字节 2 : 重置小时
		字节 3 : 重置分钟
	68 (数据存储)	00:关闭;01:启用
	69 (数据重传)	00:关闭;01:启用
		3 字节
	6a(重传间隔)	字节1 :00 (默认值)
		字节 2-3 : 重置时间, 单位 s;范围: 30~1200 (默认 600s)
	a9(上报累计值)	00:关闭;01:启用
	aa (上报温度)	00:关闭;01:启用
	ec(配置检测方向)	00: 正向; 01: 反向
	77 (配置安装高度)	2 字节,单位 mm

	6 字节	
	字节1 :00-关闭;01-启用	
	字节 2-3 :开始时间,单位 min	
	字节 4-5 :结束时间,单位 min	
	字节 6: 设置休眠期	
75(配置休眠模式)	● Bit0=1, 全关	
	● Bit7~Bit1=星期天到星期一	
	注:	
	● 如果开始时间等于结束时间,则表示全天	
	● 热电堆当前版本默认每天重复休眠配置,最后一位字节	
	默认为 FF	
	3 字节	
ab (温度校准值)	字节1 :00-关闭;01-启用	
	字节 2-3 :温度值,单位:min,乘数 0.1	
	9 字节	
	字节 1:	
	> Bit0~Bit2:	
	000:不启用	
	001:小于 (最小阈值)	
	010:大于 (最大阈值)	
	011: 等于	
06 (修改人数/温度阈	100:小于或大于	
值)	> Bit3~Bit5:	
	001: 周期人数阈值	
	010:累计人数阈值	
	011: 温度阈值	
	➢ Bit6~Bit7:预留位,默认 11	
	字节 2-3 :最小值	
	字节 4-5 :最大值	
	字节 6-9: 0000000	
84 (D2D)	00:关闭;01:启用	
35 (D2D 密钥)	8 字节,高位补零	
 96 (D2D 主控配置)	8字节	
	字节 1:	

٦

Milesight ≣@#₩

	01:有人进入
	02:有人离开
	03:人数阈值触发
	04:温度阈值触发
	05:温度阈值解除
	字节 2 :00-关闭;01-启用
	字节 3 :01-启用 LoRa 上行包;00-禁用 LoRa 上行包
	字节 4-5 : D2D 控制命令
	字节 6-7 :控制时间,单位 min
	字节8: 00-关闭控制时间;01-启用控制时间

重启设备示例:

ff10ff		
通道号	类型	数据
ff	10 (重启设备)	ff

设置上报周期示例:

ff8e 00 0200		
通道号	类型	数据
ff	8e (设置上报周期)	02 00==>00 02=>2 分钟

修改累计值重置时间为每周天 12:20 示例:

ffed 01 0c 14		
通道号	类型	数据
		01=>每周天
ff	ed (修改累计值重置时间)	重置小时: 0c => 12
		重置分钟: 14=> 20

开启温度校准值示例:

ffab 01 fdff		
通道号	类型	数据
ff	ab(开启温度校准值)	01=启用温度校准值 fd ff=>ff fd=-3*0.1=-0.3

Milesight ≣ @ \$ \$

设置 D2D 秘钥为 5572404C696E6B4C00000000000000 示例:

ff35 5572404C696E6B4C		
通道号	类型	数据
ff	35 (设置 D2D 秘钥)	5572404C696E6B4C

设置 D2D 配置示例:

ff96 03 01 01 04e0 0500 01			
通道号	类型	数据	
ff	96(设置 D2D 配置)	03=> 人数阈值触发 01=>启用 01=>启用 LoRa [®] 上行包 04 e0=>e0 04, 控制命令为 e0 04 05 00=>00 05, 控制时间为 5 mins 01=>启用控制时间	

设置温度报警示例:

ff06 dc 9600 2c01 0000000		
通道	类型	数据
ff	06 (设置温度报警)	dc=>11 011 100=大于或小于 最小值: 96 00=>00 96=15℃ 最大值: 2c 01=>01 2c=30℃

设置休眠模式示例:

ff75 01 e001 ec04 ff		
通道	类型	数据
ff	75 (设置休眠模式)	01: 启用休眠模式 e0 01 => 01 e0 = 480 分钟 = 8 hours = 8:00 ec 04 => 04 ec = 1260 分钟 =21 小时= 21:00 ff: 休眠时间从周一到周天

7.4 历史数据回传

VS351 支持数据回传功能,可下发指令查询指定时间点或指定时间段的历史存储数据。

注意:

Milesight ≣₩#₩

- (1) 使用该功能前,请确保数据存储功能正常开启,并且设备时间准确;
- (2) 单次下行指令查询指定时间段数据时,最大可上报 1000 条存储数据,数据由旧→新根据回传周期,依次上报,只上报前 1000 条,超出部分不上报;

查询指令

通道号	类型	数据
fd	6b (查询时间数据)	4字节,单位:时间戳
		8字节
	6c (查询时间范围)	字节 1-4 :开始时间,单位:时间戳
		字节 5-8 :结束时间,单位:时间戳
	6d (停止查询)	1 字节, ff
ff		3字节
	6a (设置重传间隔)	字节 1 : 00
		字节 2-3 :间隔时间,单位:s,范围:30~1200s (默认 60s)

数据回复指令

通道号	类型	数据
	6b/6c	1 字节
fa		00:数据查询成功
IC		01:时间点或时间范围无效
		02: 该时间点或时间范围内无数据
		9 字节或 13 字节
20	ce (回传)	字节1-4 :单位:时间戳
		字节 5:
		00:周期人数
		01:累计人数
		字节 6-7 :周期进入人数
		字节 8-9 :周期离开人数
		字节 10-11 :累计进入人数
		字节 12-13 :累计离开人数

注意:

Milesight

(1) 设备每次范围查询最多上传 300 条数据记录。

(2) 在查询特定时间点的数据时,设备会上传报告间隔范围内最接近查询点的数据。例如,如果设备的报告间隔为 10 分钟,用户发送命令查询存储在 17:00 的数据,设备将上传存储在 17:00 的数据 (如果存在)。如果没有 17:00 的数据,设备将搜索 16:50 到 17:10 之间的数据,并上传最接近 17:00 的数据。

示例:

查询 2023 年 8 月 28 日 13:30:00 到 2023 年 8 月 28 日 13:40:00 之间的历史数据。

fd6c d830ec64 3033ec64		
通道号	类型	数据
		开始时间: d830ec64=> 64ec30d8 = 1693200600s =
fd	6c(查询时间范围内	2023/8/28 13:30:00
	的数据)	结束时间: 3033ec64 => 64cc3330 = 1693201200s =
		2023/8/28 13:40:00

回复:

fc6c 00		
通道号	类型	数据
fd	6c(查询时间范围内	00. 杏海粉捉成功
	的数据)	

20ce 1932ec64 01 0700 0300 4a00 3800								
通道号	类型	时间戳	数据					
20	ce(历史数据)	1932ec64 => 64ec3219 =	01=周期人数+累计人数					
		1693200921s	周期进入: 0700=>0007=7					

	= 2023/8/28 13:35:21	周期离开: 0300=>0003=3
		累计进入: 4a00=>004a=74
		累计离开: 3800=>0038=56

时间戳转换:

北京时间转换为 UNIX 时间戳工具: <u>https://tool.lu/timestamp/</u>
 2022/11/11 12:00:00 => 1668139200

		1			10 20
时间	2022/11/11 12:00:00	北京时间	转换>	1668139200	秒(s) 🗸
		1. Contraction of the second	Second Second		

UNIX 时间戳转换为十六进制工具: <u>https://jisuan5.com/decimal/</u>
 1668139200 => 636DC8C0 => C0C86D63 (低位在前高位在后)